The viscosity of shoshonitic melts (Vulcanello Peninsula, Aeolian Islands, Italy): insight on the magma ascent in dikes

Abstract: The viscosity of shoshonitic melts from Vulcanello Peninsula (Vulcano Island, Italy) is experimentally determined at temperatures between 733 K and 1673 K. The water content of the melts varies from 0.03 to 4.75 wt% H2O. The micropenetration technique is employed at ambient pressure in the high viscosity range (109-1012 Pa*s). Falling sphere(s) experiments are performed at 500 and 2000 MPa in the low viscosity range (100.5-103 Pa*s). Results show a decrease of about 2 orders of magnitude in viscosity if ~ 3 wt% of water is added to the dry melt at 1300 K. At high temperature the viscosity of Vulcanello melts is intermediate between that of andesitic and basaltic melts. In contrast, at low temperatures (≤1050 K), the shoshonitic melt is characterized by a lower viscosity with respect to the two
previous melts. Based on our new data set, a calculation model is proposed to predict the viscosity of the shoshonitic melts as a function of temperature and water content. The viscosity data are used to constrain the ascent velocity of shoshonitic magmas from Vulcanello within dikes. Using petrological data (temperature and crystal content of the magma) and volcanological information (geometrical parameters of the eruptive fissure and depth of magma storage), we estimate the time scale for the ascent of magma from the main reservoir to the surface. Results show time scales in the order of hours to few days. We conclude that the rapid ascent of poorly evolved melts from Moho depths should be taken into account for the hazard assessment of Vulcano Island.
The viscosity of shoshonitic melts (Vulcanello Peninsula, Aeolian Islands, Italy): insight on the magma ascent in dikes

Francesco Vetere1,2, Harald Behrens3, Valeria Misiti2, Guido Ventura2*, Francois Holtz3, Rosanna De Rosa1, Joachim Deubener4

1Università della Calabria, Dipartimento Scienze della Terra, via P. Bucci I-87036 Arcavacata di Rende (CS), Italy
2Istituto Nazionale di Geofisica e Vulcanologia, Department of Seismology and Tectonophysics, via di Vigna Murata 605, I-00143 Roma, Italy
3Institut für Mineralogie, Leibniz Universität Hannover, Callinstr. 3, D-30167 Hannover, Germany
4Institute für Nichtmetallische Werkstoffe Technische Universität Claustal Zehntnerstr. 2a D-38678 Clausthal-Zellerfeld, Germany

*Corresponding author: Guido Ventura, Istituto Nazionale di Geofisica e Vulcanologia, Department of Seismology and Tectonophysics, via di Vigna Murata 605, I-00143 Roma, Italy. Phone: +39 06 51860221; Fax: +39 06 5041303; e-mail: ventura@ingv.it

Abstract The viscosity of shoshonitic melts from Vulcanello Peninsula (Vulcano Island, Italy) is experimentally determined at temperatures between 733 K and 1673 K. The water content of the melts varies from 0.03 to 4.75 wt\% H\textsubscript{2}O. The micropenetration technique is employed at ambient pressure in the high viscosity range (109-1012 Pa\textperiodcentered s). Falling sphere(s) experiments are performed at 500 and 2000 MPa in the low viscosity range (100.5-103 Pa\textperiodcentered s). Results show a decrease of about 2 orders of magnitude in viscosity if \textasciitilde 3 wt\% of water is added to the dry melt at 1300 K. At high temperature the viscosity of Vulcanello melts is intermediate between that of andesitic and basaltic melts. In contrast, at low temperatures (\textless 1050 K), the shoshonitic melt is characterized by a lower viscosity with respect to the two previous melts. Based on our new data set, a calculation model is proposed to predict the viscosity of the shoshonitic melts as a function of temperature and water content. The viscosity data are used to constrain the ascent velocity of shoshonitic magmas from Vulcanello within dikes. Using petrological data (temperature and
crystal content of the magma) and volcanological information (geometrical parameters of the eruptive fissure and depth of magma storage), we estimate the time scale for the ascent of magma from the main reservoir to the surface. Results show time scales in the order of hours to few days. We conclude that the rapid ascent of poorly evolved melts from Moho depths should be taken into account for the hazard assessment of Vulcano Island.

Keywords: shoshonite viscosity, water, falling sphere, micropenetration, volcanology, magma ascent in dikes, hazard

1. Introduction

Viscosity is an important factor governing both intrusive and volcanic processes. Since the pioneering study of Bowen (1934), an intensive work has been devoted to viscosity determination for melts varying from felsic to mafic compositions. Techniques applied in the high viscosity range \(10^8\) to \(10^{13}\) Pa·s include micropenetration (e.g., Hess and Dingwell, 1996), parallel plate viscosimetry (e.g., Richet et al., 1996; Whittington et al., 2000) and the evaluation of kinetics of interconversion of hydrous species (Zhang et al., 2003). In the low viscosity range \((0.1-10^4)\) Pa·s, the falling sphere technique is the only established method for viscosity determinations at elevated pressures (e.g., Shaw, 1963). Indirect constraints on viscosity may be obtained from the diffusivity of network former using the Eyring relationship (Chakraborty, 1995).

The main parameters that govern the viscosity of silicate melts are the bulk composition of the melt and the temperature (e.g., Bottinga and Weill, 1972; Shaw, 1972). Pressure has only little effect at crustal depths (below about 800 MPa) (Kushiro et al., 1976; Behrens and Schulze, 2003), whereas crystals (Lejeune and Richet, 1995; Bouhifd et al, 2004; Sato 2005) and bubbles (Lejeune et al., 1999) may have an important influence. Among the compositional parameters,
the water content of the melt is of particular importance (e.g. Schulze et al. 1996, Whittington et al. 2000). Due to difficulties in the measurement of low viscosity melts with the falling sphere techniques, silicic (i.e. rhyolitic) melts have been more intensively investigated than basaltic ones (Shaw 1963, Hess and Dingwell 1996, Schulze et al.1996, Holtz et al. 1999, Romano et al 2001 and reference therein).

Most studies have concentrated either on the prediction of the effect of anhydrous melt composition on viscosity (e.g., Russell et al 2003, Giordano and Dingwell 2003a) or on the effect of dissolved water for specific anhydrous compositions (e.g., for rhyolite, see model of Hess and Dingwell, 1996; for andesite see model of Vetere et al. 2007). Although progress has been made in modelling the viscosity as a function of water content and bulk composition, the prediction of viscosity for a composition which was not experimentally investigated has still large uncertainty (Misiti et al. 2006; Hui and Zhang 2007, Vetere et al 2007).

Up to now, viscosity data for hydrous and anhydrous shoshonitic compositions are lacking. In this study, viscosity determinations are performed on a re-melted natural shoshonite from Vulcanello Peninsula (Vulcano Island; Aeolian Islands, Italy). Various amounts of water are added to probe the effect of H₂O on melt viscosity. The data are compared with other mafic and alkali-rich compositions such as basalts (Giordano and Dingwell 2003b), trachytes (Misiti et al. 2006) and andesites (Vetere et al. 2007). The new data are used to investigate the time scale of magma ascent in this area of Aeolians.

2. Geological and volcanological setting

Vulcano is the southernmost island of the Aeolian Archipelago, and, with Lipari and Salina, it is located along a NNW-SSE–trending strike-slip fault system (Ventura et al., 1999). The activity on Vulcano dates back to about 120 ka (De Astis et al., 1997). The island is formed by Primordial Vulcano and Piano Caldera in the south, and by Mastro Minico–Lentia complex
and Fossa Caldera in the north (Fig. 1a). The active Fossa Cone is located within the Fossa Caldera. Last eruption was in 1888/1890. The small lava shield and pyroclastic cones of Vulcanello (123 m a.s.l.) form the northern part of the island (Fig. 1b). Based on greek and latin writing (e.g., Strabo in the Geography), Vulcanello has been traditionally dated to 183 or 126 BC. However, recent archeomagnetic studies postdate the building of Vulcanello to AD 1000 and 1600 (Arrighi et al., 2006) and confirm the hypothesis that its “birth” was related to a long-lived eruptive period. The oldest products are those of the pyroclastic cone of Vulcanello I (AD 1050) (Fig. 1b). The shield lava (tholoid) and the cone II were built through a continuous activity between AD 1100 and 1250. The lava flows were emitted from a 600 m long, 0.5 to 1.5 m wide, NE-SW striking fissure. These flows consist of shoshonites and minor latites and, together with the volcanic rocks from La Fossa Cone, are the most alkaline products of the Aeolian Arc. Following Peccerillo et al. (2006), the shoshonites of Vulcanello represent basaltic magmas that slightly evolve at the mantle-continental crust interface (20 km depth) and rapidly upraise to the surface. The new archeomagnetic data suggest an age of AD1600 for the cone III eruption and the final trachytic flow (Arrighi et al., 2006 and references therein).

3. Experimental and analytical methods

3.1 Starting material

As reported by Keller (1980) Vulcanello is mainly composed by tephrytic leucite lavas. Based on Total Alkali-Silica (TAS) the Vulcanello magmas fall in the shoshonitic field (table 1; De Astis et al., 1997). For the viscosity study we used a porphiritic sample from a lava fountain of the early phase of activity whose composition matches very closely that of the shield lavas. The modal abundance of phenocrysts is 8-11 vol.%. The mineral phases are clinopyroxenes (Cpx),
plagioclases (Pl) and amphiboles (Amph). The phenocrysts often contain inclusions of Fe-Ti oxides. The groundmass consists of glass, leucite (Lc), Fe-Ti oxides, Cpx, Pl, Amph, and small amount of olivine (Ol). The bulk rock is characterized by SiO₂ = 53.47 wt.% and Na₂O + K₂O = 8.38 wt.% and is representative for the average composition of the Vulcanello lavas (De Astis et al., 1997) (composition Vul1, Tab. 1).

About 100 g of crushed bulk rock was melted in a Pt crucible in air at 1873 K for 4 hour. After quenching on a metal plate, the obtained glass was crushed and melted again in the same furnace at the same conditions to improve homogeneity. The composition of several glass fragments was analyzed by electron microprobe CAMECA SX 100. Measurement conditions were: defocused beam of 15 µm diameter, accelerating voltage of 15 kV and a beam current of 4 nA.

The procedure to synthesize water-bearing glasses is described in detail by Vetere et al. (2006). Distilled water was added stepwise to a dry glass powder in AuPd capsules (diameter of 5-6 mm, length of 30-40 mm). After welding, the capsules were placed in an internally heated gas pressure vessel (IHPV) at 1523 K and 500 MPa for 24 hours. The syntheses were terminated by rapid quench (see Berndt et al. 2002 for experimental details).

For the viscosity experiments performed in IHPVs, cylinders (diameter: 3 - 6 mm; length: 10 – 15 mm) were cored out of the hydrous glasses. The residual glass was crushed to a fine grained powder except for some fragments to be used for determination of the water content and the Fe²⁺/Fe tot ratio. The preparation of capsules for the high pressure viscosity experiments is detailed in Vetere et al. (2006).

Samples were not pre-equilibrated for experiments in a piston cylinder apparatus (PCA), but used as received after melting at ambient pressure (nominally dry glasses) or after synthesis in the IHPV (hydrous glasses containing about 2 wt % H₂O, samples Vul 24, Vul 25, Vul 27, Vul
Preparation of capsules for falling sphere experiments in the PCA was done in the same way as described in Misiti et al. (2006).

3.2 Iron and water determination

The Fe\(^{2+}\)/Fe\(_{\text{tot}}\) ratio in glasses was measured before and after the experiments (see Table 2) by using a modified colorimetric method (Wilson 1960, Vetere et al 2007). Compared to the starting glass (Fe\(^{2+}\)/Fe\(_{\text{tot}}\) = 0.40, Tab. 1) the glasses after high pressure syntheses in the IHPV are more reduced (Fe\(^{2+}\)/Fe\(_{\text{tot}}\) of 0.55 – 0.75, Tab. 2). As shown by Vetere et al. (2007) for an andesitic composition, the Fe\(^{2+}\)/Fe\(_{\text{tot}}\) can influence the viscosity by about 0.2 log units in dry melts. This difference becomes less pronounced for water-rich samples. In this study, the Fe\(^{2+}\)/Fe\(_{\text{tot}}\) ratio of glasses determined before and after the viscosity determinations do not show evidence for changing Fe\(^{2+}\)/Fe\(_{\text{tot}}\) ratio during the viscosity experiments (Tab. 2).

The water content of the glasses was measured by Karl-Fischer Titration (KFT) and infrared spectroscopy (IR). To account for unextracted water contents measured by KFT, the values obtained after extraction (KFT) were corrected by adding 0.13 wt% H\(_2\)O (Behrens and Stuke, 2003). The uncertainty of the KFT analysis is estimated to be ± 0.10 wt%, including the uncertainty due to unextracted water and the error in the titration rate (for details of the analytical technique and error estimation see Behrens and Stuke, 2003). To test the homogeneity of H\(_2\)O concentrations in selected samples, wafers from different part of the samples were analyzed by KFT (Table 2).

Infrared spectroscopy was employed to determine the water content of the nominally anhydrous melts and to analyzed possible dehydration and sample alteration during micropenetration experiments. Absorption spectra of selected samples were recorded on double-
side polished thin sections (thickness mm) using an IR microscope IRscopeII which is connected to an FTIR spectrometer Bruker IFS88. Measurements were performed in the mid-infrared using a globar light source, a KBr beam splitter and a narrow range MCT detector. The analyzed area was limited by a slit aperture between objective and detector to ca. 100 x 100 µm in the focus plane. Typically 50 scans were accumulated for each spectrum with a spectral resolution of 2 cm⁻¹. The water content was derived from the baseline-corrected height of the band at 3550 cm⁻¹ employing a molar absorption coefficient of 73 ± 5 L mol⁻¹ cm⁻¹ derived from a shoshonitic glass containing 2.11 wt% H₂O (measured by KFT).

3.3 Falling sphere methods

Viscosity was measured in the high temperature range using the falling sphere method. Experiments at 500 MPa were carried out at temperatures from 1373 to 1673 K in internally heated pressure vessels (IHPVs) at the Institute of Mineralogy, University of Hannover (Germany). The samples were first pressurized and then heated up using two different heating rates: 30K/min to 1073K and 100K/min to the final temperature. After a dwell of 287 to 3645 s the capsule containing the viscosity sample was rapidly quenched (estimated quench rate of 150-200 K/s, Berndt et al., 2002).

Two experiments with nominally dry samples were performed at 2000 MPa, at 1473 and 1573 K, in a ¾ inch end-load piston cylinder apparatus (PCA; Voggenreiter company) at the Istituto Nazionale di Geofisica e Vulcanologia in Rome (Italy) to determine the effect of pressure on melt viscosity. Additional experiments were also done in the PCA at 500 MPa. The dry capsules were stored in an oven at 110 °C overnight to remove humidity and then welded. Loaded capsules were put into 19.1 mm NaCl-crushable alumina-pyrex (nominally anhydrous
samples) or NaCl-crushable alumina-pyrophillite-pyrex (Freda et al., 2001) assemblies. The first assemblage is used for dry conditions; as suggested by Freda et al (2001) the second assemblage is preferable for H2O-bearing samples to avoid water loss during experiments.

The samples were first pressurized using the piston-in technique, and then heated at a rate of 200 K/min up to 20 K below the target temperature. A smaller rate of 40 K/min was applied within the last 20 K of heating to avoid overshooting. Temperature was controlled within ±3 K using one W95Re5-W74Re26 (type C) thermocouple located close to the centre of the sample (for further details see Misiti et al., 2006). The experiments were ended by switching off the heating power while maintaining pressure constant by automatic compensation. The initial quench rate was about 2000 K/min.

Because the Fe-bearing glasses are not transparent, we used X-ray images to monitor sphere positions (SIEMENS HELIODENT DS X-rays camera, exposure time of 0.16 s in Hannover (Vetere et al 2007); de Götzen xgenus® dc camera with digital scanning image, exposure time of 0.20 s in Rome (Misiti et al 2006)). X-ray radiographs of each sample were recorded before and after the experiments for two different orientations of the sample (perpendicular to each other) to measure the positions of the sphere relative to the Pt marker and relative to the capsule walls. The settling distance of the sphere could be measured (with an error of ±20 µm) by superimposing pre- and post-experiments images (for details, see Misiti et al. 2006).

The viscosity η is calculated by Stokes law

\[\eta = \frac{2 \cdot t \cdot g \cdot \Delta \rho \cdot r^2 \cdot C_F}{9 \cdot d} \]

(1)

where \(d \) is the settling distance in cm, \(t \) is the run duration in sec, \(\Delta \rho \) is the density difference between the sphere and the melt, \(g \) is the acceleration due to gravity (9.81 m/s²), \(r \) is the radius of the sphere and \(C_F \) is the Faxen correction (Faxen, 1923) which accounts for the effect of viscous drag by the capsule wall on the settling sphere. To account for movement of spheres during
heating and cooling, we calculated the effective run duration for each experiment as described in Vetere et al. (2006). Room temperature densities of Pt and Pd are 21.45 and 12.02 g/cm³, respectively. No correction was made for differential compression and thermal expansion of the solid materials because this would contribute less than 1% to the viscosity. The sphere radius was measured before the experiments and it was not possible to check whether a possible change in shape happened during pressurization.

The density of the dry glass was measured by weighing single glass pieces in air and in water. The average value from 3 measurements is 2.656 g/L. According to Richet et al. (2000) the partial molar volume of H₂O in glass is 12.0 cm³/mol and considering that the pressure derivative is roughly 1% per 500 MPa for silicate glasses (Mysen and Richet 2005) we derived the following equation to estimate the density of the run product.

\[
density (\text{g/L}) = (2658 - 19.7 \cdot C_{H_2O}) \cdot (1 + 0.00002 \cdot P)
\]

(2)

with \(C_{H_2O}\) in wt% and \(P\) in MPa.

3.4 Micropenetration technique

Indentation measurements were performed at ambient pressure on a vertical dilatometer (Bähr VIS 404) at the Institute für Nichtmetallische Werkstoffe, Technische Universität Clausthal (Germany). Cylindrical plates (diameter: 4-5 mm; height: 1.5 mm) with coplanar polished base planes were heated up to the desired temperature at a rate of 10 K/min. After stabilization of temperature a load of 0.5 – 0.9 kg was placed on top of a pushing rod which pressed a sapphire micro-sphere (radius \(R = 0.75\) mm) into the glass surface. Indentation of the sphere into the sample was measured as a function of time using a linear variable displacement transducer. The shear viscosity \(\eta\) was calculated as
\[\eta = \frac{0.1875 \cdot F \cdot t}{\sqrt{R} \sqrt{L^3}} \]

(3)

where \(F \) is the applied force (= mass of load times gravitation acceleration), \(t \) is the time, \(R \) is the radius of the sphere, and \(L \) is the indentation depth (Douglas et al. 1965; Brückner and Demharter 1975). The accessible viscosity range of the apparatus is \(10^8 - 10^{14.7} \) Pa·s (Zietka et al., in press). The system was calibrated by the standard glass G1 of the Physikalisch-Technische Bundesanstalt (PTB, Böse et al., 2001). The standard deviation of the viscosity was ± 0.2 log units at \(10^{14.7} \) Pa s and ±0.1 log units at \(10^{12} \) Pas.

Experimental temperature varied between 893 K and 1003 K for nominally dry melts while for the hydrous ones the temperature cover a range from 733 to 823 K. Accuracy of temperature was within ± 6 K, limited by the accuracy of the thermocouples and the measuring equipment (Zietka et al., in press).

4. Results

4.1 Falling sphere

Results of the falling sphere experiments are summarized in Table 2. Falling sphere experiments cover a range of temperature from 1373 to 1623 K and water content from nominally dry to 4.75 wt% H₂O. The minimum viscosity measured (sample Vul 13b) was 5.6 Pa·s using Pt sphere with a radius of 62.5 µm, ~5 min run time, temperature of 1523 K and pressure of 500 MPa. Viscosity experiments with dry melts were possible only at temperatures from 1573 to 1673 K (Vul 21, Vul 22, Vul 23a and Vul 23b). In one case (samples Vul23a and Vul23b, Table 2) we performed two viscosity experiments keeping the same condition of T and P, varying the run time and the size of spheres. Two identical capsules were prepared for PCA runs. The Pt spheres used were 95 and
125 \mu m in radius for samples Vul23a and Vul23b, respectively. After welding shut the capsules, two separate runs with a dwell time of 729 and 1828 s, respectively, were performed (Table 2). The viscosities derived from these experiments agree within the estimated error, demonstrating the reliability of the falling sphere experiments. The effect of pressure was tested for the nominally dry melt at 1573 K (500 MPa: samples Vul23a and Vul23b; 2000 MPa: sample Vul7). Results show no dependence of viscosity on pressure in this range; the viscosity at 2000 MPa is slightly higher than that at 500 MPa (Table 2) but the two values are identical within error.

The water contents measured before and after experiments on selected samples, are identical within error. Oxidation state of iron before and after the experiment in the IHPV shows no significant difference, due to the relatively short run time and due to the long term pre-equilibration of the melt in the same vessel. The effect of pre-equilibration is visible also in the decrease of Fe2+/Fe\textsubscript{tot} with increasing water content. At constant hydrogen fugacity in the vessel, the oxygen fugacity increases with water fugacity (water content of the melt). Dry samples processed in the PCA apparatus show a Fe2+/Fe\textsubscript{tot} ratio about 0.15 higher than the starting material (compare Tab. 1 and Tab. 2).

4.2 Partially crystallized samples

Samples obtained at 1473 K and 500 and 2000 MPa in nominally dry samples are below the liquidus temperature (Fig. 2). The size of the crystals is very small (1-5 \mu m) and it was not possible to analyse them quantitatively. In these samples the viscosity determined by the falling sphere technique is higher than expected, mainly due to the presence of crystals. The extrapolated viscosity for the pure melt at 1473 K is approximately 102.7 Pa.s, while the average viscosity in partially crystallized samples at 1473 K and 500 MPa (Vul 3, Vul 4, Vul 5 and Vul 6, Table 2) is 103.0 Pa.s. These samples have an amount of crystals of about 11 vol\% (determined by standard
image processing technique, see Fig. 2). The crystal content of a sample obtained after an experiment at 1473 K and 2000 MPa pressure was even higher (~24 vol%, see Fig. 2). Due to the relatively high crystals content, the short dwell time (half hour) and probably the small radius of the sphere, it was not possible to measure the viscosity in the first run. The experiment was repeated choosing a dwell time of about 1 hour (see Table 2 sample Vul 8), and a Pt sphere of 175 µm in radius (~ double respect to the previous sphere), allowing us to measure the viscosity of the partly crystallized sample.

The observed changes of viscosity by partial crystallization can be compared with the prediction of the Einstein-Roscoe equation (Einstein 1911, Roscoe 1952):

\[\eta = \eta_m (1 - \phi / 0.6)^{-2.5} \]

where \(\eta \) is the effective viscosity of a liquid with a volume fraction \(\phi \) of crystals, and \(\eta_m \) is the viscosity of the melt. A value of \(10^{2.98} \) Pa.s is calculated for the samples containing 11 vol.% crystals at 1473 K, 500 MPa (by setting the critical fraction of crystals at 0.6; Einstein 1911, Marsh 1981), close to the experimental value. For the higher crystal content of 24 vol%, the measured viscosity (Table 2) is ~0.75 log unit higher than that extrapolated for the pure melt and about 0.20 log unit higher than predicted by the Einstein-Roscoe equation.

4.3 Micropenetration experiments

In Fig. 4 a typical result of an indentation measurement is shown. Noteworthy, the derived viscosity values increase continuously with time at constant temperature. A possible explanation is the onset of sample alteration, e.g. crystallization of Fe-Ti-oxides as observed in viscosity experiments with andesites (Richet et al. 1996; Liebske et al. 2003, Vetere et al 2007). The increase in viscosity was less than 0.1 log units within the time interval used for measurement.
Thus we decided to use the average viscosity in that time interval as an estimate of the viscosity of supercooled shoshonitic melts, but we are aware that this value represents only a maximum viscosity.

Experiments were carried out with samples containing between 0.02 and 2.11 wt% H$_2$O. Results of the high viscosity experiments are reported in Table 3. The viscosity of the nominally dry and hydrous samples (0.02 and 2.11 wt% H$_2$O) shows a nearly Arrhenian behaviour in the temperature range 733 - 1003 K (Fig. 4). With the nominally anhydrous sample Vul y_1, two measurements were performed during the experimental sequence. With the sample Vul y_2, three temperature were investigated and the results are in agreement with those obtained with the previous one as illustrated in Fig. 4. In case of the hydrous sample Vul 14, the last measurement was performed at a temperature intermediate between those of the first two measurements. The consistency of the data (nearly Arrhenian behavior) implies that sample alteration had only minor effects on melt viscosity (less than 0.2 log units).

After experiments, samples Vul y_1 and Vul 14 were still clear glasses without visible crystallization (checked by microscopy). Sample Vul y_2, which was processed at higher temperature than Vul y_1, was much darker, indicating changes in iron environment and onset of crystallization of iron oxides (Liebske et al. 2003). But the consistence of viscosity data for both samples (Fig. 3) implies that crystals in the dry glasses (if present) had no significant influence on the measured viscosity and hence we used all the data presented in Tab. 3 to model the viscosity of shoshonitic melts. Water contents measured by IR spectroscopy are identical for the centre and the rim of the hydrous glass Vul14. Thus possible dehydration of the glass during the micropenetration experiment is limited to a zone < 20µm from the surface.
4.4 Vulcanello melts: a viscosity model.

The new viscosity dataset on a shoshonitic melt was used to develop an empirical model predicting the relative viscosity variation as a function of melt water content and temperature at geological relevant conditions. The data base consists of 24 measurements. The model is based on the VFT approach to account for the non-Arrhenian temperature dependence of viscosity. Data were fitted using a non-linear least-square regression. The following equation was found to best reproduce the experimental data and the observed viscosity trends:

\[
\log \eta = -6.17 + \frac{7882.34}{(T - 246.62)} + \frac{2366.04}{(T - 534.21)} \cdot \exp\left(-474.96 \cdot \frac{w}{T}\right)
\]

(5)

where \(\eta \) is the viscosity in Pa\cdot s, \(T \) the temperature in K and \(w \) is the water content in wt% H\(_2\)O. This equation reproduces the experimental data with a 1\(\sigma \) standard deviation of 0.17 log units (Fig. 5). Because of the lack of experimental data in the high viscosity range, this equation should be limited viscosity values below \(10^{13} \) Pa s. It is also emphasized that the equation is not constrained for water contents above 2.1 wt% in the high viscosity regime. Based on Eqn. (5), the viscosity of the Vulcanello anhydrous melts at temperatures relevant for magmatic processes (1473 K \(\leq T \leq \) 1273 K) varies between \(6 \times 10^2 \) Pa s and \(5.1 \times 10^4 \) Pa s. Within the same temperature range, melts with 2.0 wt.% H\(_2\)O have viscosities between 38 Pa s and \(10^5 \) Pa s. Therefore, the viscosity of such hydrous melts is lower by nearly two orders of magnitude compared to the dry melts.
5. Discussion and conclusions

5.1 Comparison with previous data on depolymerized natural melts

Equation (5) allows us to compare the viscosity of shoshonitic melts with that of basaltic, andesitic and trachytic melts (Giordano et al., 2003b; Misiti et al., 2006; Vetere et al., 2007). At $T>1050$ K, the Vulcanello shoshonitic melt shows viscosity values between those of basalts and andesites (Fig. 6). This behavior can be expected taking into account that shoshonites have a SiO$_2$ content higher than that of basalts and lower than andesites (Table 1; Fig. 6), although the amount of alkali is higher than that of basalts and andesites. At $T=1050$ K, the viscosity of shoshonitic melt is close to that of basalts. Since anhydrous basaltic and shoshonitic systems are below the solidus temperature at 1050 K, the viscosity of anhydrous shoshonitic melts should always be higher than that of anhydrous basalts at equilibrium conditions. The viscosity difference between shoshonitic and trachytic melts increases with increasing temperature, reaching a maximum of about 2 log units at $T>1400$ K (Fig. 6). Following the model of Misiti et al. (2006), this difference decreases by increasing the water content dissolved in the melts.

5.2 Ascent of the Vulcanello shohonitic magma

The Vulcanello lava shield formed by effusions from a 600 m long, 0.5 to 1.5 m wide eruptive fissure (dike) (see section 2). Assuming that the magma upraise is due to buoyancy, the overpressure ΔP at the Moho depth, which is the depth at which the primary melts stay and differentiate (Zanon et al. 2003, Peccerillo et al. 2006) may be estimated using the relation:

$$\Delta P = \Delta \rho \cdot g \cdot h$$

where $\Delta \rho$ is the difference between the density of the country rock and the melt, g is the gravity, and h is the vertical length of the dike. We select $h = 20$ km, which is the Moho depth below
Vulcanello (Ventura et al., 1999), and $\Delta \rho = 350 \text{ kg/m}^3$. This latter value is the difference between 2850 kg/m3, which is the seismically and gravity constrained average density of the crustal rocks below the Aeolians (Cella et al., 2006), and the density of the Vulcanello shoshonitic melts ($\rho = 2500 \pm 100 \text{ kg/m}^3$). Using relation (6), we obtain 68 MPa, which is a value consistent with that estimated for other dike systems, e.g. the 60 MPa source overpressure estimated by Menard and Tait (2002) at the McKenzie swarm (Canada). The above estimated value of ΔP for the opening of the Vulcanello dike allows us to have a semiquantitative estimate the Reynolds number Re within the dike. It is well known that a laminar flow regime occurs at $Re < 10$, whereas a turbulent flow regime occurs at $Re \geq 1000$. Transitional regimes are characterized by $10 < Re < 1000$. A critical value of the viscosity η_c between these regimes can be estimated if ΔP, the width of the dike w, and h are known throughout the relation (Sparks et al., 2006):

$$\eta_c = \left(\frac{2\Delta P \rho w^3}{3h Re_c}\right)^{1/2}$$ \hspace{1cm} (7)

where Re_c is the critical Re. Turbulent flow occurs when $\eta < \eta_c$. In the equation (7), we adopted the following values: $\Delta P = 68 \text{ MPa}$ (equation 6), $\rho = 2500 \text{ kg/m}^3$, $h = 20 \text{ km}$, and $w = 1 \text{ m}$, i.e. the average value of the Vulcanello dikes. We also select 10 and 1000 as values representative for Re_c. For $Re_c = 10$, we obtain $\eta_c = 238 \text{ Pa s}$. For $Re_c = 1000$, η_c is 23 Pa s. Using equation (5) and taking into account that the temperature estimated for the Vulcanello magmas is $1353 \pm 40 \text{ K}$ (Zanon et al., 2003), a viscosity of $10^{3.8} \text{ Pa s}$ for a dry melt and of $10^{2.4} \text{ Pas}$ for a melt containing 2.0 wt.% H_2O can be estimated. Moreover, taking into account that the Vulcanello shoshonites have a crystal content of about 10 vol.%, we obtain, using the Einstein-Roscoe equation, a viscosity of $10^{4.0} \text{ Pa s}$ for the dry magma and of $10^{2.6} \text{ Pa s}$ for the hydrous ($\text{H}_2\text{O} = 2.0 \text{ wt.\%}$) magma. These viscosity values are in the same order of magnitude than those estimated using eq. (7) for $Re_c = 10$. We conclude that the Vulcanello magma moved within the dike in a prevailing
laminar flow regime. To calculate the ascent velocity u of such a magma we use the relation of Lister and Kerr (1991) for laminar flows:

$$u = \frac{w^{2/3} \eta \Delta \rho}{g}$$ \hspace{1cm} (8)

by setting $w=1$ m, $\Delta \rho=350$ kg/m3, $\eta($dry$)= 10^{4.0}$ Pa s, and $\eta($hydrous$)= 10^{2.6}$ Pa s, we obtain the following values: $u($dry$)=0.11$ m/s, and $u($hydrous$)=2.87$ m/s. A lower limit for the ascent velocity of the shoshonitic magmas can be estimated by applying the Stokes law to the cm- to dm-sized quartz xenoliths with preserved high-pressure fluid inclusions occurring at Vulcanello (Zanon et al., 2003). Assuming a Newtonian rheology, the settling velocity u_s is:

$$u_s = C_d \left(\Delta \alpha \cdot g \cdot d/\rho \right)^{1/2}$$ \hspace{1cm} (9)

where C_d is the drag coefficient (~1), $\Delta \alpha$ is the density contrast between the xenolith and the magma, d is the xenolith diameter, and ρ is the magma density. By setting $d=0.1$ m and quartz density = 2650 kg/m3, the settling velocity is 0.24 m/s. Therefore, by selecting 0.24 m/s and 2.87 m/s as representative values of the lowest and highest velocity, the ascent time (h/u) of the Vulcanello magmas is between ~ 2 h and 23 h (~1 day). The velocity values of the Vulcanello shoshonites are one to two order of magnitude higher than those estimated for Na-alkaline magmas (e.g. the Ustica basalts (u~0.01 m/s); Alletti et al., 2005) and lower than those estimated for kimberlites (u=2.9-16.8 m/s; Sparks et al., 2006). The ascent velocities of shoshonites are within the same order of magnitude of those estimated for the Kilauea basalts (u up to 1.4 m/s; Klein et al. 1987) and East of Izu Peninsula (u~0.3 m/s; Hayashi and Morita, 2003). Taking into account that the models (equations 7 to 9) used to calculate the ascent velocity of the Vulcanello magmas does not consider the possible role of (1) the volatile exsolution, which can cause a viscosity increase in the magma at the tip of the dyke, (2) freezing processes at the walls, which also can locally increase the viscosity (Wylie et al., 1999), and (3) the constant geometry of the dike in depth, the our velocity estimates must be considered as indicating an order of magnitude
rather than being absolute values. Additional analytical and experimental studies to constrain pre-eruptive temperatures, volatile contents and degassing processes during ascent at Vulcanello would be helpful to quantify the physical parameters of magmas. In addition, more information from geophysical data must be collected in future studies to better constraints the dike geometry in depth, even if numerical models on the ascent of magma in dikes with varying shape show that the dike geometry plays a major role in controlling the mass flux but do not significantly affect the average ascent velocity Giberti and Wilson (1990). In any case, our data suggest that the 20 km ascent may have occurred within hours to a few days. This is consistent with the observation that, at Vulcano, the eruptions triggered by the sudden arrival of shoshonitic magmas from a deep (~20 km) reservoir did not show significant long to medium term precursory signals (Peccerillo et al., 2006). We conclude that the hazard evaluation at Vulcano Island should consider the rapid ascent of less evolved melts from depths close to the Moho and not only the upraise of evolved magma from shallow chambers.

Acknowledgements. This research was funded by the Italian Dipartimento della Protezione Civile in the frame of the 2004-2006 agreement with Istituto Nazionale Geofisica e Vulcanologia-INGV and by DFG project Ho 1337/16. We thank Otto Diedrich, Willi Hurkuck, Bettina Aichinger, Piergiorgio Scarlato and Lilli Freda for the experimental and logistic support.
References

Earth Planetary Science Letters 166, 71-84.
Romano, C., Poe, B., Mincione, V., Hess, K.U., Dingwell, D.B., 2001. The viscosities of dry and hydrous XAlSi3O8 (X = Li, Na, K, Ca0.5, Mg0.5) melts. Chemical Geology 174, 115-132.
Schulze, F., Behrens, H., Holtz, F., Roux, J., Johannes, W., 1996. The influence of H2O on the

Zietka, S., Deubener, J., Behrens, H., Muller, R., Glass transition and viscosity of hydrated silica

Figure caption

Fig. 1. a) Geological sketch map of Vulcano island (modified from De Astis et al., 1997); b) Detail of the Vulcanello peninsula.

Fig. 2. Back scattered images of samples Vul6 and Vul8 obtained at 1473 K. Note the increase of crystals content as pressure increase from 500 (Vul6) to 2000 (Vul8) MPa.

Fig. 3. Low temperature viscosity data for dry and hydrous samples indicating near-Arrhenian behaviour of the shoshonitic melts in the high viscosity range.

Fig. 4. Typical dataset produced during a micropenetration experiment (sample Vul y_1, Table 3): viscosity, temperature and indentation of the sphere vs time. Note the relative increase in viscosity during running time.

Fig. 5. Comparison between determined viscosity data obtained for a shoshonitic melt and the predicted viscosity using the empirical model (equation 5).

Fig. 6. Comparison of the viscosity of a nearly anhydrous shoshonitic melt with models predicting the viscosity of a nearly anhydrous basalt, andesite and trachyte (see compositions in Table 1).
Fig 3

Dry samples
2.1 wt% H2O
Fig. 4

Log η (in Pa s)

 Sphere depth (μm)

 Temperature (K)

 Time (min)
Fig 5

Log η (η in Pa s) experimental:

-0 2 4 6 8 10

Log η (η in Pa s) predicted:

-0 2 4 6 8 10

Micropenetration data

Falling sphere data

Log η (in Pa s) experimental

Log η (in Pa s) predicted
FIG 6

Temperature (K)
1000 1200 1400 1600 1800 2000

log η (η in Pa s)
0
2
4
6
8
10
12

Dry melts

ETNA BASALT (Giordano et al. 2003)
VULCANELLO SHOSHONITE (This work)
UNZEN ANDESITE (Vetere et al. 2007)
AMS TRACHYTE (Misiti et al. 2006)
Table 1. Electron microprobe analyses and water content of the starting material in comparison to basalt and andesite and trachyte (wt%).

<table>
<thead>
<tr>
<th></th>
<th>Shoshonite</th>
<th>Etna basalt(^a)</th>
<th>Unzen andesite(^b)</th>
<th>AMS trachyte(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO(_2)</td>
<td>53.47 (0.29)</td>
<td>48.02</td>
<td>55.11 (0.44)</td>
<td>59.90</td>
</tr>
<tr>
<td>TiO(_2)</td>
<td>0.03 (0.07)</td>
<td>1.64</td>
<td>1.09 (0.05)</td>
<td>0.39</td>
</tr>
<tr>
<td>Al(_2)O(_3)</td>
<td>15.48 (0.20)</td>
<td>16.63</td>
<td>18.39 (0.36)</td>
<td>18.00</td>
</tr>
<tr>
<td>FeO(_{tot})</td>
<td>8.39 (0.33)</td>
<td>-</td>
<td>9.16 (0.32)</td>
<td>3.86</td>
</tr>
<tr>
<td>FeO</td>
<td>-</td>
<td>3.41</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fe(_2)O(_3)</td>
<td>-</td>
<td>7.70</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MnO</td>
<td>0.16 (0.10)</td>
<td>0.20</td>
<td>0.08 (0.06)</td>
<td>0.12</td>
</tr>
<tr>
<td>MgO</td>
<td>4.88 (0.17)</td>
<td>5.28</td>
<td>2.88 (0.17)</td>
<td>0.89</td>
</tr>
<tr>
<td>CaO</td>
<td>8.51 (0.25)</td>
<td>10.69</td>
<td>8.44 (0.25)</td>
<td>2.92</td>
</tr>
<tr>
<td>Na(_2)O</td>
<td>3.66 (0.15)</td>
<td>3.83</td>
<td>3.38 (0.25)</td>
<td>4.05</td>
</tr>
<tr>
<td>K(_2)O</td>
<td>4.72 (0.16)</td>
<td>1.98</td>
<td>1.41 (0.08)</td>
<td>8.50</td>
</tr>
<tr>
<td>P(_2)O(_5)</td>
<td>-</td>
<td>0.60</td>
<td>-</td>
<td>0.21</td>
</tr>
<tr>
<td>Fe(^{2+})/Fe(_{tot})(^e)</td>
<td>0.40</td>
<td>-</td>
<td>0.41</td>
<td>-</td>
</tr>
<tr>
<td>H(_2)O (IR)</td>
<td>0.029</td>
<td>-</td>
<td>0.015</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes. Compositions are normalized to a total of 100 wt%. Numbers in parentheses correspond to 1 \(\sigma\) standard deviation. H\(_2\)O contents were measured by IR spectroscopy using the peak height of the absorption band at 3550 cm\(^{-1}\).

\(^a\) Basaltic lava from the 1992 flow at Etna, Italy; Giordano and Dingwell (2003).
\(^b\) Andesite from Unzen vulcano, Japan; Vetere et al. (2007).
\(^c\) AMS trachyte used for viscosity determination in Misiti et al (2006).
\(^d\) Total iron is given as FeO.
\(^e\) Fe\(^{2+}\)/Fe\(_{tot}\) was measured using the modified Wilson method (see text).
<table>
<thead>
<tr>
<th>No.</th>
<th>Apparatus</th>
<th>H2O initial (wt%)</th>
<th>H2O final (wt%)</th>
<th>Pressure (MPa)</th>
<th>T (K)</th>
<th>Sphere radius (µm)</th>
<th>C_f</th>
<th>Dwell time (s)</th>
<th>Effective time (s)</th>
<th>Falling distance (cm)</th>
<th>η (Pa·s)</th>
<th>Fe^{2+}/Fe_{tot} before exp.</th>
<th>Fe^{3+}/Fe_{tot} after exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vul 3 *</td>
<td>PCA</td>
<td>0.03</td>
<td>500</td>
<td>1473</td>
<td>90±2.5</td>
<td>Pt</td>
<td>0.87</td>
<td>7198</td>
<td>7225</td>
<td>0.268</td>
<td>891.3±101.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vul 4 *</td>
<td>PCA</td>
<td>0.03</td>
<td>500</td>
<td>1473</td>
<td>95±2.5</td>
<td>Pt</td>
<td>0.88</td>
<td>7198</td>
<td>7225</td>
<td>0.292</td>
<td>812.8±91.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vul 5 *</td>
<td>PCA</td>
<td>0.03</td>
<td>500</td>
<td>1473</td>
<td>150±5</td>
<td>Pt</td>
<td>0.79</td>
<td>3595</td>
<td>3622</td>
<td>0.276</td>
<td>955.0±114.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vul 6 *</td>
<td>PCA</td>
<td>0.03</td>
<td>500</td>
<td>1473</td>
<td>95±2.5</td>
<td>Pt</td>
<td>0.88</td>
<td>10798</td>
<td>10825</td>
<td>0.283</td>
<td>1122.0±126.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vul 8 *</td>
<td>PCA</td>
<td>0.03</td>
<td>2000</td>
<td>1473</td>
<td>175±5</td>
<td>Pt</td>
<td>0.79</td>
<td>3597</td>
<td>3624</td>
<td>0.111</td>
<td>3252.8±373.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vul 23a</td>
<td>PCA</td>
<td>0.03</td>
<td>500</td>
<td>1573</td>
<td>95±5</td>
<td>Pt</td>
<td>0.93</td>
<td>700</td>
<td>729</td>
<td>0.332</td>
<td>75.9±7.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vul 23b</td>
<td>PCA</td>
<td>0.03</td>
<td>500</td>
<td>1573</td>
<td>125±2.5</td>
<td>Pd</td>
<td>0.93</td>
<td>1800</td>
<td>1828</td>
<td>0.541</td>
<td>72.2±6.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vul 7</td>
<td>PCA</td>
<td>0.03</td>
<td>2000</td>
<td>1573</td>
<td>90±2.5</td>
<td>Pt</td>
<td>0.94</td>
<td>697</td>
<td>726</td>
<td>0.281</td>
<td>80.6±8.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vul 22</td>
<td>PCA</td>
<td>0.03</td>
<td>500</td>
<td>1623</td>
<td>90±5</td>
<td>Pt</td>
<td>0.94</td>
<td>700</td>
<td>731</td>
<td>0.659</td>
<td>34.8±3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vul 21</td>
<td>PCA</td>
<td>0.03</td>
<td>500</td>
<td>1673</td>
<td>120±5</td>
<td>Pt</td>
<td>0.92</td>
<td>250</td>
<td>282</td>
<td>0.829</td>
<td>18.5±2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vul 27</td>
<td>IHPV</td>
<td>0.58</td>
<td>0.62</td>
<td>500</td>
<td>1473</td>
<td>185±5</td>
<td>Pt</td>
<td>0.92</td>
<td>3500</td>
<td>3645</td>
<td>1.571</td>
<td>294.3±33.3</td>
<td></td>
</tr>
<tr>
<td>Vul 25</td>
<td>PCA</td>
<td>2.01²</td>
<td>1.98²</td>
<td>500</td>
<td>1473</td>
<td>67.5±2.5</td>
<td>Pt</td>
<td>0.95</td>
<td>700</td>
<td>727</td>
<td>0.317</td>
<td>40.9±5.1</td>
<td></td>
</tr>
<tr>
<td>Vul 24</td>
<td>PCA</td>
<td>2.01</td>
<td>500</td>
<td>1523</td>
<td>72.5±2.5</td>
<td>Pd</td>
<td>0.95</td>
<td>700</td>
<td>728</td>
<td>0.637</td>
<td>12.1±1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vul 28</td>
<td>PCA</td>
<td>2.01</td>
<td>500</td>
<td>1573</td>
<td>85±2.5</td>
<td>Pd</td>
<td>0.94</td>
<td>500</td>
<td>528</td>
<td>0.701</td>
<td>10.5±1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vul 17a</td>
<td>IHPV</td>
<td>3.08³</td>
<td>2.96³</td>
<td>500</td>
<td>1473</td>
<td>70±2.5</td>
<td>Pt</td>
<td>0.98</td>
<td>360</td>
<td>405</td>
<td>0.442</td>
<td>18.1±2.3</td>
<td></td>
</tr>
<tr>
<td>Vul 17b</td>
<td>IHPV</td>
<td>3.10³</td>
<td>500</td>
<td>1523</td>
<td>70±2.5</td>
<td>Pt</td>
<td>0.98</td>
<td>600</td>
<td>647</td>
<td>1.382</td>
<td>9.2±1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vul 2</td>
<td>IHPV</td>
<td>3.68³</td>
<td>3.62³</td>
<td>500</td>
<td>1523</td>
<td>65±1</td>
<td>Pt</td>
<td>0.98</td>
<td>240</td>
<td>287</td>
<td>0.602</td>
<td>8.1±0.8</td>
<td></td>
</tr>
<tr>
<td>Vul 13a</td>
<td>IHPV</td>
<td>4.27</td>
<td>500</td>
<td>1473</td>
<td>62.5±1</td>
<td>Pt</td>
<td>0.98</td>
<td>360</td>
<td>405</td>
<td>0.910</td>
<td>5.3±0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vul 13b</td>
<td>IHPV</td>
<td>4.19</td>
<td>500</td>
<td>1523</td>
<td>62.5±1</td>
<td>Pt</td>
<td>0.98</td>
<td>240</td>
<td>287</td>
<td>0.791</td>
<td>5.6±0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vul 16</td>
<td>IHPV</td>
<td>4.75</td>
<td>500</td>
<td>1473</td>
<td>54±1</td>
<td>Pt</td>
<td>0.98</td>
<td>360</td>
<td>405</td>
<td>0.902</td>
<td>5.3±0.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes. Experiments using same sample are presented in the order in which they were performed (labeled as a and b in the sample name). Sphere radii were determined before incorporation in the glass. C_f refers to the Faxen correction. Nominally dry samples were analyzed by IR spectroscopy, hydrous samples (>0.5 wt% H2O) were analyzed by KFT. Superscript t, b and c refer to top, bottom and center part of the sample, the location where samples for KFT analysis was taken. *) Samples contain ~11 vol % of crystals. ‡) Sample contain ~24 vol% of crystals.
Table 3. Results of micropenetration viscometry at 1 atm.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Temperature (K)</th>
<th>log η (Pa·s)</th>
<th>Load (g)</th>
<th>H$_2$O (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vul y$_1$</td>
<td>923</td>
<td>11.50</td>
<td>800</td>
<td>0.019$^{\text{IR}}$</td>
</tr>
<tr>
<td></td>
<td>953</td>
<td>10.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vul y$_2$</td>
<td>893</td>
<td>12.25</td>
<td>900</td>
<td>0.030$^{\text{IR}}$</td>
</tr>
<tr>
<td></td>
<td>971</td>
<td>10.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1003</td>
<td>9.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vul 14</td>
<td>823</td>
<td>9.99</td>
<td>500</td>
<td>2.11$^{\text{KFT}}$</td>
</tr>
<tr>
<td></td>
<td>733</td>
<td>12.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>763</td>
<td>11.89</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The superscript IR refers to infrared and the subscript KFT refers to Karl-Fischer titration. Experiments on the same sample are presented in the order in which they were performed.